Гидроксид натрия
Содержание:
- Применение
- Таблица молярных масс химических элементов:
- Химические свойства
- Физические свойства гидроксида натрия:
- Методы получения вещества
- Эквивалент в окислительно-восстановительных реакциях
- Молярная масса элементов и соединений
- Области применения
- Эквивалент в кислотно-основных реакциях
- Свойства едкой щелочи
- История
- Моль
- Химические свойства
- Получение
- Рынок каустической соды
- Физические свойства
- Производство
Применение
Биодизельное топливо
Получение биодизеля
Едкий натр применяется во множестве отраслей промышленности и для бытовых нужд:
Каустик применяется в целлюлозно-бумажной промышленности для делигнификации (сульфатный процесс) целлюлозы, в производстве бумаги, картона, искусственных волокон, древесно-волоконных плит.
Для омыления жиров при производстве мыла, шампуня и других моющих средств
В древности во время стирки в воду добавляли золу, и, по-видимому, хозяйки обратили внимание, что если зола содержит жир, попавший в очаг во время приготовления пищи, то посуда хорошо моется. О профессии мыловара (сапонариуса) впервые упоминает примерно в 385 году нашей эры Теодор Присцианус
Арабы варили мыло из масел и соды с VII века, сегодня мыла производятся тем же способом, что и 10 веков назад. В настоящее время продукты на основе гидроксида натрия (с добавлением гидроксида калия), нагретые до +50…+60 °C, применяются в сфере промышленной мойки для очистки изделий из нержавеющей стали от жира и других масляных веществ, а также остатков механической обработки.
В химических отраслях промышленности — для нейтрализации кислот и кислотных оксидов, как реагент или катализатор в химических реакциях, в химическом анализе для титрования, для травления алюминия и в производстве чистых металлов, в нефтепереработке — для производства масел.
Для изготовления биодизельного топлива — получаемого из растительных масел и используемого для замены обычного дизельного топлива. Для получения биодизеля к девяти массовым единицам растительного масла добавляется одна массовая единица спирта (то есть соблюдается соотношение 9:1), а также щелочной катализатор (NaOH). Полученный эфир (главным образом линолевой кислоты) отличается хорошей воспламеняемостью, обеспечиваемой высоким цетановым числом. Цетановое число — условная количественная характеристика самовоспламеняемости дизельных топлив в цилиндре двигателя (аналог октанового числа для бензинов). Если для минерального дизтоплива характерен показатель в 50-52 %, то метиловый эфир уже изначально соответствует 56-58 % цетана. Сырьём для производства биодизеля могут быть различные растительные масла: рапсовое, соевое и другие, кроме тех, в составе которых высокое содержание пальмитиновой кислоты (пальмовое масло). При его производстве в процессе этерификации также образуется глицерин, который используется в пищевой, косметической и бумажной промышленности, либо перерабатывается в эпихлоргидрин по методу Solvay.
В качестве агента для растворения засоров канализационных труб, в виде сухих гранул или в составе гелей (наряду с гидроксидом калия). Гидроксид натрия дезагрегирует засор и способствует лёгкому продвижению его далее по трубе.
В гражданской обороне для дегазации и нейтрализации отравляющих веществ, в том числе зарина, в ребризерах (изолирующих дыхательных аппаратах (ИДА), для очистки выдыхаемого воздуха от углекислого газа.
В текстильной промышленности — для мерсеризации хлопка и шерсти. При кратковременной обработке едким натром с последующей промывкой волокно приобретает прочность и шелковистый блеск.
Гидроксид натрия также используется для мойки пресс-форм автопокрышек.
В приготовлении пищи: для мытья и очистки фруктов и овощей от кожицы, в производстве шоколада и какао, напитков, мороженого, окрашивания карамели, для размягчения маслин и придания им чёрной окраски, при производстве хлебобулочных изделий. Зарегистрирован в качестве пищевой добавки E-524. Некоторые блюда готовятся с применением каустика:лютефиск — скандинавское блюдо из рыбы — сушёная треска вымачивается 5-6 дней в едкой щёлочи и приобретает мягкую, желеобразную консистенцию.
брецель — немецкие крендели — перед выпечкой их обрабатывают в растворе едкой щёлочи, которая способствует образованию уникальной хрустящей корочки.
В косметологии для удаления ороговевших участков кожи, бородавок, папиллом.
В фотографии — как ускоряющее вещество в проявителях для высокоскоростной обработки фотографических материалов.
Таблица молярных масс химических элементов:
Атомный номер |
Химический элемент |
Символ | Молярная масса |
1 | Водород | H | 1,00784-1,00811 а.е.м. (г/моль) |
2 | Гелий | He | 4,002602(2) а.е.м. (г/моль) |
3 | Литий | Li | 6,938-6,997 а.е.м. (г/моль) |
4 | Бериллий | Be | 9,012182(3) а.е.м. (г/моль) |
5 | Бор | B | 10,806-10,821 а.е.м. (г/моль) |
6 | Углерод | C | 12,0096-12,0116 а.е.м. (г/моль) |
7 | Азот | N | 14,00643-14,00728 а.е.м. (г/моль) |
8 | Кислород | O | 15,99903-15,99977 а.е.м. (г/моль) |
9 | Фтор | F | 18,998403163(6) а.е.м. (г/моль) |
10 | Неон | Ne | 20,1797(6) а.е.м. (г/моль) |
11 | Натрий | Na | 22,98976928(2) а.е.м. (г/моль) |
12 | Магний | Mg | 24,304-24,307 а.е.м. (г/моль) |
13 | Алюминий | Al | 26,9815386(8) а.е.м. (г/моль) |
14 | Кремний | Si | 28,084-28,086 а.е.м. (г/моль) |
15 | Фосфор | P | 30,973762(2) а.е.м. (г/моль) |
16 | Сера | S | 32,059-32,076 а.е.м. (г/моль) |
17 | Хлор | Cl | 35,446-35,457 а.е.м. (г/моль) |
18 | Аргон | Ar | 39,948(1) а.е.м. (г/моль) |
19 | Калий | K | 39,0983(1) а.е.м. (г/моль) |
20 | Кальций | Ca | 40,078(4) а.е.м. (г/моль) |
21 | Скандий | Sc | 44,955912(6) а.е.м. (г/моль) |
22 | Титан | Ti | 47,867(1) а.е.м. (г/моль) |
23 | Ванадий | V | 50,9415(1) а.е.м. (г/моль) |
24 | Хром | Cr | 51,9961(6) а.е.м. (г/моль) |
25 | Марганец | Mn | 54,938045(5) а.е.м. (г/моль) |
26 | Железо | Fe | 55,845(2) а.е.м. (г/моль) |
27 | Кобальт | Co | 58,933194(4) а.е.м. (г/моль) |
28 | Никель | Ni | 58,6934(4) а.е.м. (г/моль) |
29 | Медь | Cu | 63,546(3) а.е.м. (г/моль) |
30 | Цинк | Zn | 65,38(2) а.е.м. (г/моль) |
31 | Галлий | Ga | 69,723(1) а.е.м. (г/моль) |
32 | Германий | Ge | 72,630(8) а.е.м. (г/моль) |
33 | Мышьяк | As | 74,92160(2) а.е.м. (г/моль) |
34 | Селен | Se | 78,96(3) а.е.м. (г/моль) |
35 | Бром | Br | 79,901-79,907 а.е.м. (г/моль) |
36 | Криптон | Kr | 83,798(2) а.е.м. (г/моль) |
37 | Рубидий | Rb | 85,4678(3) а.е.м. (г/моль) |
38 | Стронций | Sr | 87,62(1) а.е.м. (г/моль) |
39 | Иттрий | Y | 88,90585(2) а.е.м. (г/моль) |
40 | Цирконий | Zr | 91,224(2) а.е.м. (г/моль) |
41 | Ниобий | Nb | 92,90638(2) а.е.м. (г/моль) |
42 | Молибден | Mo | 95,96(2) а.е.м. (г/моль) |
43 | Технеций | Tc | 97,9072 а.е.м. (г/моль) |
44 | Рутений | Ru | 101,07(2) а.е.м. (г/моль) |
45 | Родий | Rh | 102,90550(2) а.е.м. (г/моль) |
46 | Палладий | Pd | 106,42(1) а.е.м. (г/моль) |
47 | Серебро | Ag | 107,8682(2) а.е.м. (г/моль) |
48 | Кадмий | Cd | 112,411(8) а.е.м. (г/моль) |
49 | Индий | In | 114,818(1) а.е.м. (г/моль) |
50 | Олово | Sn | 118,710(7) а.е.м. (г/моль) |
51 | Сурьма | Sb | 121,760(1) а.е.м. (г/моль) |
52 | Теллур | Te | 127,60(3) а.е.м. (г/моль) |
53 | Йод | I | 126,90447(3) а.е.м. (г/моль) |
54 | Ксенон | Xe | 131,293(6) а.е.м. (г/моль) |
55 | Цезий | Cs | 132,9054519(2) а.е.м. (г/моль) |
56 | Барий | Ba | 137,327(7) а.е.м. (г/моль) |
57 | Лантан | La | 138,90547(7) а.е.м. (г/моль) |
58 | Церий | Ce | 140,116(1) а.е.м. (г/моль) |
59 | Празеодим | Pr | 140,90765(2) а.е.м. (г/моль) |
60 | Неодим | Nd | 144,242(3) а.е.м. (г/моль) |
61 | Прометий | Pm | 144,9127 а.е.м. (г/моль) |
62 | Самарий | Sm | 150,36(2) а.е.м. (г/моль) |
63 | Европий | Eu | 151,964(1) а.е.м. (г/моль) |
64 | Гадолиний | Gd | 157,25(3) а.е.м. (г/моль) |
65 | Тербий | Tb | 158,92535(2) а.е.м. (г/моль) |
66 | Диспрозий | Dy | 162,500(1) а.е.м. (г/моль) |
67 | Гольмий | Ho | 164,93032(2) а.е.м. (г/моль) |
68 | Эрбий | Er | 167,259(3) а.е.м. (г/моль) |
69 | Тулий | Tm | 168,93421(2) а.е.м. (г/моль) |
70 | Иттербий | Yb | 173,045(10) а.е.м. (г/моль) |
71 | Лютеций | Lu | 174,9668(1) а.е.м. (г/моль) |
72 | Гафний | Hf | 178,49(2) а.е.м. (г/моль) |
73 | Тантал | Ta | 180,94788(2) а.е.м. (г/моль) |
74 | Вольфрам | W | 183,84(1) а.е.м. (г/моль) |
75 | Рений | Re | 186,207(1) а.е.м. (г/моль) |
76 | Осмий | Os | 190,23(3) а.е.м. (г/моль) |
77 | Иридий | Ir | 192,217(3) а.е.м. (г/моль) |
78 | Платина | Pt | 195,084(9) а.е.м. (г/моль) |
79 | Золото | Au | 196,966569(4) а.е.м. (г/моль) |
80 | Ртуть | Hg | 200,592(3) а.е.м. (г/моль) |
81 | Таллий | Tl | 204,382-204,385 а.е.м. (г/моль) |
82 | Свинец | Pb | 207,2(1) а.е.м. (г/моль) |
83 | Висмут | Bi | 208,98040(1) а.е.м. (г/моль) |
84 | Полоний | Po | 208,9824 а.е.м. (г/моль) |
85 | Астат | At | 209,9871 а.е.м. (г/моль) |
86 | Радон | Rn | 222,0176 а.е.м. (г/моль) |
87 | Франций | Fr | 223,0197 а.е.м. (г/моль) |
88 | Радий | Ra | 226,0254 а.е.м. (г/моль) |
89 | Актиний | Ac | 227,0278 а.е.м. (г/моль) |
90 | Торий | Th | 232,03806(2) а.е.м. (г/моль) |
91 | Протактиний | Pa | 231,03588(2) а.е.м. (г/моль) |
92 | Уран | U | 238,02891(3) а.е.м. (г/моль) |
93 | Нептуний | Np | 237,0482 а.е.м. (г/моль) |
94 | Плутоний | Pu | 244,0642 а.е.м. (г/моль) |
95 | Америций | Am | 243,061375 а.е.м. (г/моль) |
96 | Кюрий | Cm | 247,0703 а.е.м. (г/моль) |
97 | Берклий | Bk | 247,0703 а.е.м. (г/моль) |
98 | Калифорний | Cf | 251,0796 а.е.м. (г/моль) |
99 | Эйнштейний | Es | 252,083 а.е.м. (г/моль) |
100 | Фермий | Fm | 257,0951 а.е.м. (г/моль) |
101 | Менделевий | Md | 258,1 а.е.м. (г/моль) |
102 | Нобелий | No | 259,1009 а.е.м. (г/моль) |
103 | Лоуренсий | Lr | 266 а.е.м. (г/моль) |
104 | Резерфордий (Курчатовий) | Rf | 267 а.е.м. (г/моль) |
105 | Дубний (Нильсборий) | Db | 268 а.е.м. (г/моль) |
106 | Сиборгий | Sg | 269 а.е.м. (г/моль) |
107 | Борий | Bh | 270 а.е.м. (г/моль) |
108 | Хассий | Hs | 269 а. е. м. (г/моль) |
109 | Мейтнерий | Mt | 278 а. е. м. (г/моль) |
110 | Дармштадтий | Ds | 281 а. е. м. (г/моль) |
Коэффициент востребованности
1 416
Химические свойства
Гидроксид натрия (едкая щёлочь) — сильное химическое основание (к сильным основаниям относят гидроксиды, молекулы которых полностью диссоциируют в воде), к ним относят гидроксиды щелочных и щёлочноземельных металлов подгрупп Iа и IIа периодической системы Д. И. Менделеева, KOH (едкое кали), Ba(OH)2 (едкий барит), LiOH, RbOH, CsOH, а также гидроксид одновалентного таллия TlOH. Щёлочность (основность) определяется валентностью металла, радиусом внешней электронной оболочки и электрохимической активностью: чем больше радиус электронной оболочки (увеличивается с порядковым номером), тем легче металл отдаёт электроны, и тем выше его электрохимическая активность и тем левее располагается элемент в электрохимическом ряду активности металлов, в котором за ноль принята активность водорода.
Водные растворы NaOH имеют сильную щелочную реакцию (pH 1%-раствора = 13,4). Основными методами определения щелочей в растворах являются реакции на гидроксид-ион (OH−), (c фенолфталеином — малиновое окрашивание и метиловым оранжевым (метилоранжем) — жёлтое окрашивание). Чем больше гидроксид-ионов находится в растворе, тем сильнее щёлочь и тем интенсивнее окраска индикатора.
Гидроксид натрия вступает в следующие реакции:
- с кислотами, амфотерными оксидами и гидроксидами
c кислотами — с образованием солей и воды:
-
- NaOH + HCl → NaCl + H2O
-
- NaOH + H2S → NaHS + H2O (кислая соль, при отношении 1:1)
-
- 2NaOH + H2S → Na2S + 2H2O (в избытке NaOH)
Общая реакция в ионном виде:
-
- OH− + H+ → H2O
с амфотерными оксидами которые обладают как основными, так и кислотными свойствами, и способностью реагировать с щелочами, как с твёрдыми при сплавлении:
-
- 2NaOH + ZnO →ot Na2ZnO2 + H2O — при сплавлении
-
- 2NaOH + ZnO + H2O → Na2[Zn(OH)4] — в растворе
- с амфотерными гидроксидами
-
- NaOH + Al(OH)3 →ot NaAlO2 + 2H2O — при сплавлении
-
- 3NaOH + Al(OH)3 → Na3[Al(OH)6] — в растворе
- с солями в растворе
-
- 2NaOH + CuSO4 → Cu(OH)2↓ + Na2SO4
Гидроксид натрия используется для осаждения гидроксидов металлов. К примеру, так получают гелеобразный гидроксид алюминия, действуя гидроксидом натрия на сульфат алюминия в водном растворе, при этом избегая избытка щёлочи и растворения осадка. Его и используют, в частности, для очистки воды от мелких взвесей.
- c неметаллами
например, с фосфором — с образованием гипофосфита натрия:
- 4P + 3NaOH + 3H2O → PH3↑ + 3NaH2PO2
с серой:
-
- 3S + 6NaOH → 2Na2S + Na2SO3 + 3H2O
- с галогенами
-
- 2NaOH + Cl2 → NaClO + NaCl + H2O (дисмутация хлора при комнатной температуре)
-
- 6NaOH + 3Cl2 → NaClO3 + 5NaCl + 3H2O (дисмутация хлора при нагревании раствора)
- с металлами
Гидроксид натрия вступает в реакцию с алюминием, цинком, титаном. Он не реагирует с железом и медью (металлами, которые имеют низкий электрохимический потенциал). Алюминий легко растворяется в едкой щёлочи с образованием хорошо растворимого комплекса — тетрагидроксоалюмината натрия и водорода:
-
- 2Al + 2NaOH + 6H2O → 2Na[Al(OH)4] + 3H2
Эта реакция использовалась в первой половине XX века в воздухоплавании: для заполнения водородом аэростатов и дирижаблей в полевых (в том числе боевых) условиях, так как данная реакция не требует источников электроэнергии, а исходные реагенты для неё могут легко транспортироваться.
- с эфирами, амидами и алкилгалогенидами (гидролиз):
Гидролиз эфиров
с жирами (омыление) такая реакция необратима, так как получающаяся кислота со щёлочью образует мыло и глицерин. Глицерин впоследствии извлекается из подмыльных щёлоков путём вакуум-выпарки и дополнительной дистилляционной очистки полученных продуктов. Этот способ получения мыла был известен на Ближнем Востоке с VII века.
В результате взаимодействия жиров с гидроксидом натрия получают твёрдые мыла (они используются для производства кускового мыла), а с гидроксидом калия либо твёрдые, либо жидкие мыла в зависимости от состава жира.
- с многоатомными спиртами — с образованием алкоголятов:
-
- HOCH2CH2OH + 2NaOH → NaOCH2CH2ONa + 2H2O
Физические свойства гидроксида натрия:
Наименование параметра: | Значение: |
Химическая формула | NaOН |
Синонимы и названия иностранном языке | sodium hydroxide (англ.)
едкий натр (рус.) натрия гидроокись (рус.) сода каустическая (рус.) |
Тип вещества | неорганическое |
Внешний вид | бесцветные ромбические кристаллы |
Цвет | белый, бесцветный |
Вкус | —* |
Запах | — |
Агрегатное состояние (при 20 °C и атмосферном давлении 1 атм.) | твердое вещество |
Плотность (состояние вещества – твердое вещество, при 20 °C), кг/м3 | 2130 |
Плотность (состояние вещества – твердое вещество, при 20 °C), г/см3 | 2,13 |
Температура кипения, °C | 1403 |
Температура плавления, °C | 323 |
Гигроскопичность | высокая гигроскопичность |
Молярная масса, г/моль | 39,997 |
* Примечание:
— нет данных.
Методы получения вещества
Промышленные методы, с помощью которых можно получить едкий натр, делятся на химические и электрохимические.
Химические методы
Существует три основных химических метода.
Пиролитический метод состоит из двух стадий:
- Получение оксида натрия, разложением карбоната или гидрокарбоната при температуре: Na2CO3 = Na2O + CO2 или NaНCO3 = Na2O + 2CO2↑ + Н2О — при 1000 °C.
- Получение непосредственно гидроокиси натрия, растворением оксида: Na2O + H2O = 2NaOH.
Известковый метод: взаимодействие карбоната натрия (соды) с гашёной известью (гидроксидом кальция) при температуре (80 °C) называют каустификацией. Результатом такой реакции является раствор каустической соды и осадок карбоната кальция.
Уравнение реакции: Na2CО3 + Са (ОН)2 = CaCО3 ↓ + 2NaOH.
Ферритный метод получения может происходить двумя способами:
- Спекание кальцинированной соды с оксидом железа (III) при температуре 1100−1200 °C с образованием феррита натрия: Na2CO3 + Fe2O3 = NaFeO2 + CO2↑.
- Получение гидроокиси натрия происходит с помощью «ощелачивания» (добавления воды) феррита: 2NaFeO2 + H2O = 2NaOH + Fe2O3*H2O↓.
Серьёзными недостатками таких способов является большой расход энергии и сильная загрязнённость продукта. Такие методы получения NaOH в настоящее время почти не используются в промышленности.
Электрохимические методы
Из минерала галита, состоящего преимущественно из NaCl, с помощью электролиза получают гидроксид натрия. Помимо щёлочи в результате такой реакции, получают ещё и хлор и водород.
В лабораторных условиях щёлочь можно получить, например:
- растворением оксида в воде Na2O + H2O = 2NaOH,
- реакцией перекиси натрия с водой Na2O2 + H2O = 2NaOH+Н2О2.
Но в настоящее время химические методы получения редко используются в лаборатории, чаще используют электрохимические методы.
Эквивалент в окислительно-восстановительных реакциях
Фактор эквивалентности соединений в окислительно-восстановительных реакциях равен:
fэкв(X) = 1/n, (2.5)
где n – число отданных или присоединенных электронов.
Для определения фактора эквивалентности рассмотрим три уравнения реакций с участием перманганата калия:
2KMnO4 + 5Na2SO3 + 3H2SO4 = 5Na2SO4 + 2MnSO4 + K2SO4 + 3H2O.
2KMnO4 + 2Na2SO3 + H2O = 2Na2SO4 + 2MnO2 + 2KOH.
2KMnO4 + Na2SO3 + 2NaOH = Na2SO4 + K2MnO4 + Na2MnO4 + H2O.
В результате получаем следующую схему превращения KMnO4.
в кислой среде: Mn+7 + 5e = Mn+2
в нейтральной среде: Mn+7 + 3e = Mn+4
в щелочной среде: Mn+7 + 1e = Mn+6
Схема превращений KMnO4 в различных средах
Таким образом, в первой реакции fэкв(KMnO4) = 1/5, во второй – fэкв(KMnO4) = 1/3, в третьей – fэкв(KMnO4) = 1.
Следует подчеркнуть, что фактор эквивалентности дихромата калия, реагирующего в качестве окислителя в кислой среде, равен 1/6:
Cr2O72- + 6e + 14H+ = 2 Cr3+ + 7H2O
Молярная масса элементов и соединений
Соединения — вещества, состоящие из различных атомов, которые химически связаны друг с другом. Например, приведенные ниже вещества, которые можно найти на кухне у любой хозяйки, являются химическими соединениями:
- соль (хлорид натрия) NaCl
- сахар (сахароза) C₁₂H₂₂O₁₁
- уксус (раствор уксусной кислоты) CH₃COOH
Молярная масса химических элементов в граммах на моль численно совпадает с массой атомов элемента, выраженных в атомных единицах массы (или дальтонах). Молярная масса соединений равна сумме молярных масс элементов, из которых состоит соединение, с учетом количества атомов в соединении. Например, молярная масса воды (H₂O) приблизительно равна 1 × 2 + 16 = 18 г/моль.
Области применения
Гидроокись натрия применяют в различных областях промышленности, в производстве, а также широко применяется для бытовых нужд:
- производство моющих агентов (мыла, шампуни), средства бытовой химии,
- целлюлозно-бумажная промышленность,
- химическая промышленность (в качестве катализатора или реагента, в аналитической химии для титрования, в нефтепереработке),
- оборонная промышленность использует каустик для нейтрализации отравляющих газов, как агент, очищающий воздух, вдыхаемый через дыхательный аппарат, от углекислого газа,
- текстильная промышленность (обработка хлопковых и шерстяных нитей — мерсеризация),
- пищевая промышленность (в процессе производства множества различных продуктов, таких как хлеб, различные напитки, карамель, мороженое и многое другое),
- косметология (в составах для пилинга),
- фотография (вещество используется в проявлении фотоматериалов).
Эквивалент в кислотно-основных реакциях
На примере взаимодействия ортофосфорной кислоты со щелочью с образованием дигидро-, гидро- и среднего фосфата рассмотрим эквивалент вещества H3PO4.
H3PO4 + NaOH = NaH2PO4 + H2O, fэкв(H3PO4) =1.
H3PO4 + 2NaOH = Na2HPO4 + 2H2O, fэкв(H3PO4) =1/2.
H3PO4 + 3NaOH = Na3PO4 + 3H2O, fэкв(H3PO4) =1/3.
Эквивалент NaOH соответствует формульной единице этого вещества, так как фактор эквивалентности NaOH равен единице. В первом уравнении реакции молярное соотношение реагентов равно 1:1, следовательно, фактор эквивалентности H3PO4 в этой реакции равен 1, а эквивалентом является формульная единица вещества H3PO4.
Во втором уравнении реакции молярное отношение реагентов H3PO4 и NaOH составляет 1:2, т.е. фактор эквивалентности H3PO4 равен 1/2 и её эквивалентом является 1/2 часть формульной единицы вещества H3PO4 .
В третьем уравнении реакции количество веществ реагентов относятся друг к другу как 1:3. Следовательно, фактор эквивалентности H3PO4 равен 1/3, а её эквивалентом является 1/3 часть формульной единицы вещества H3PO4.
Таким образом, эквивалент вещества зависит от вида химического превращения, в котором принимает участие рассматриваемое вещество.
Следует обратить внимание на эффективность применения закона эквивалентов: стехиометрические расчёты упрощаются при использовании закона эквивалентов, в частности, при проведении этих расчётов отпадает необходимость записывать полное уравнение химической реакции и учитывать стехиометрические коэффициенты. Например, на взаимодействие без остатка 0,25 моль-экв ортофосфата натрия потребуется равное количество эквивалентов вещества хлорида кальция, т.е. n(1/2CaCl2) = 0,25 моль
Свойства едкой щелочи
Гидроокись (гидроксид) натрия называют также едким натром, едкой щёлочью (такое название обусловлено способностью вещества разъедать стекло, кожу, бумагу, вызывать сильнейшие химические ожоги) и каустической содой (каустик — от греч. kaustikos жгучий, едкий).
Физические свойства
Гидроксид натрия выпускается в виде гранул белого цвета, скользких на ощупь.
Растворение вещества в воде, происходит с выделением большого количества тепла. Гидроксид натрия является гигроскопичным веществом, т. е. он активно поглощает водяные пары из воздуха. А также каустик способен поглощать углекислый газ, образуя на воздухе NaНCO3.
Молярная масса NaOH равна 39,997 г/моль, плотность вещества 2,02 г/см3, растворимость в воде 108,7 г/100 мл, температуры кипения и плавления для каустической соды равны соответственно 1403 °C и 323 °C.
Молекулы гидроокиси натрия полностью диссоциируют на ионы в водных растворах, а значит едкий натр — сильное основание. Водные растворы гидроокиси натрия обладают сильнейшей щелочной реакцией (pH 1%-раствора = 13).
Химические свойства
NaOH способен вступать в реакции с кислотами (серной H2SO4, угольной H2CO3, соляной HCl и другими), в результате чего образуются соли и вода:
- 2NaOH + H2CO3 → Na2СO3 + 2H2O,
- 2NaOH + H2SO4 → Na2SO4 + 2H2O.
С кислотными оксидами в результате взаимодействия образуются соль и вода:
- SiO2 + 2NaOH → Na2SiO3 + H2O,
- 2NaOH + SO2 → Na2SO3 + H2O.
C основными оксидами реакция не идёт: MgO/ Bao /CaO + NaOH ≠.
C амфотерными оксидами гидроксид натрия также образует соли и воду: ZnO + 2NaOH + H2O → Na2 (раствор).
C солями гидроокись натрия реагирует при условии, что в результате будет образовано нерастворимое как, например, в реакции с сульфатом меди (CuSO4 + NaOH), газообразное вещество или вода:
- Fe2 (SO4)3 + 6NaOH → 2Fe (OH)3↓ + 3Na2SO4,
- CuSO4 + 2NaOH → Cu (OH)2↓ + Na2SO4,
- CuCl2 + 2NaOH → Cu (OH)2↓ + 2NaCl.
C неметаллами:
- с фосфором 3NaOH + 4P + 3H2O → 3NaH2PO4 + PH3,
- с серой 6NaOH + 3S → 2Na2S + Na2SO3 + 3H2O.
C металлами гидроокись натрия реагирует с цинком (Zn), алюминием (Al), титаном (Ti). C железом же и медью NaOH не взаимодействует. Примеры:
- Zn + 2NaOH + 2H2O → H2↑ + Na2 тетрагидроксицинкат натрия,
- 2NaOH + 2Al + 6H2O → 3H2↑ + 2Na тетрагидроксиалюминат натрия.
C жирами щёлочь реагирует с образованием мыла: (C17H35COO)3C3H5 + 3NaOH → C3H5 (OH)3 + 3C17H35COONa.
История
Гидроксид натрия впервые был получен мыловарами. Процедура изготовления гидроксида натрия появилась как часть рецепта изготовления мыла в арабской книге конца 13 века: « Аль-мухтара фи фунун мин аль-суна» («Изобретения различных промышленных искусств»), составленную аль -Мухтара. -Музаффар Юсуф ибн ‘Умар ибн’ Али ибн Расул (ум. 1295), король Йемена. Рецепт предусматривал многократное пропускание воды через смесь щелочи (по-арабски: al-qily , где qily — это зола солянки , богатой натрием; следовательно, щелочь представляла собой нечистый карбонат натрия ) и негашеной извести ( оксид кальция , CaO), в результате чего получали раствор гидроксида натрия. Европейские мыловары тоже следовали этому рецепту. Когда в 1791 году французский химик и хирург Николя Леблан (1742–1806) запатентовал процесс массового производства карбоната натрия , природная «кальцинированная сода» (нечистый карбонат натрия, полученный из золы растений, богатых натрием) был заменен по этой искусственной версии. Однако к 20-му веку электролиз хлорида натрия стал основным методом получения гидроксида натрия.
Моль
Все вещества состоят из атомов и молекул
В химии важно точно измерять массу веществ, вступающих в реакцию и получающихся в результате нее. По определению моль является единицей количества вещества в СИ
Один моль содержит точно 6,02214076×10²³ элементарных частиц. Это значение численно равно константе Авогадро NA, если выражено в единицах моль⁻¹ и называется числом Авогадро. Количество вещества (символ n) системы является мерой количества структурных элементов. Структурным элементом может быть атом, молекула, ион, электрон или любая частица или группа частиц.
Постоянная Авогадро NA = 6.02214076×10²³ моль⁻¹. Число Авогадро — 6.02214076×10²³.
Другими словами моль — это количество вещества, равное по массе сумме атомных масс атомов и молекул вещества, умноженное на число Авогадро. Единица количества вещества моль является одной из семи основных единиц системы СИ и обозначается моль. Поскольку название единицы и ее условное обозначение совпадают, следует отметить, что условное обозначение не склоняется, в отличие от названия единицы, которую можно склонять по обычным правилам русского языка. Один моль чистого углерода-12 равен точно 12 г.
Химические свойства
Гидроксид кальция является довольно сильным основанием, из-за чего водный раствор имеет сильнощелочную реакцию.
Как и все основания, реагирует с кислотами; как щелочь участвует в реакциях нейтрализации кислот (см. реакция нейтрализации) с образованием соответствующих солей кальция, например:
- Ca(OH)2 + H2SO4 → CaSO4↓ + 2H2O .
Реакцией нейтрализации обусловлено постепенное помутнение раствора гидроксида кальция при стоянии на воздухе, так как гидроксид кальция, взаимодействует с поглощённым из воздуха углекислым газом, как и растворы других сильных оснований, эта же реакция происходит при пропускании углекислого газа через известковую воду, — реакции качественного анализа на углекислый газ:
- Ca(OH)2 + CO2 → CaCO3↓ + H2O
При дальнейшем пропускании углекислого газа через известковую воду раствор снова становится прозрачным, так как при этом образуется кислая соль — гидрокарбонат кальция, имеющий более высокую растворимость в воде, причём при нагревании раствора гидрокарбоната кальция он снова разлагается с выделением углекислого газа и при этом выпадает осадок карбоната кальция:
- CaCO3 + H2O + CO2 ⇄ Ca(HCO3)2 .
Гидроксид кальция реагирует с оксидом углерода при температуре около 400 °C:
- Ca(OH)2 + CO →400oC CaCO3 + H2 .
Реагирует с некоторыми солями, но реакция происходит только в том случае, если в результате реакции одно из образующихся веществ плохо растворимое и выпадает в осадок, например:
- Ca(OH)2 + Na2SO3 → CaSO3↓ + 2NaOH .
Получение
Существуют химические и электрохимические методы получения гидроксида.
Химические методы
Известковый:
Na2CO3+Ca(OH)2=2NaOH+CaCO3
Ферритный:
Na2CO3+Fe2O3=2NaFeO2+CO2;
2NaFeO2+nH2O=2NaOH+Fe2O3*nH2O.
Электрохимические методы
В основе методов – электролиз водного раствора хлорид натрия (поваренной соли). Различают диафрагменный, мембранный и ртутные способы.
В настоящее время химические методы используются мало из-за ряда существенных недостатков: примеси в получаемой щелочи, энергоёмкий процесс. Поэтому в промышленности более предпочтительны электрохимические методы получения едкого натра.
Рынок каустической соды
В России, согласно ГОСТ 2263-79, производятся следующие марки натра едкого:
- ТР — твёрдый ртутный (чешуированный);
- ТД — твёрдый диафрагменный (плавленый);
- РР — раствор ртутный;
- РХ — раствор химический;
- РД — раствор диафрагменный.
Наименование показателя | ТР ОКП 21 3211 0400 | ТД ОКП 21 3212 0200 | РР ОКП 21 3211 0100 | РХ 1 сорт ОКП 21 3221 0530 | РХ 2 сорт ОКП 21 3221 0540 | РД Высший сорт ОКП 21 3212 0320 | РД Первый сорт ОКП 21 3212 0330 |
---|---|---|---|---|---|---|---|
Внешний вид | Чешуированная масса белого цвета. Допускается слабая окраска | Плавленая масса белого цвета. Допускается слабая окраска | Бесцветная прозрачная жидкость | Бесцветная или окрашенная жидкость. Допускается выкристаллизованный осадок | Бесцветная или окрашенная жидкость. Допускается выкристаллизованный осадок | Бесцветная или окрашенная жидкость. Допускается выкристаллизованный осадок | Бесцветная или окрашенная жидкость. Допускается выкристаллизованный осадок |
Массовая доля гидроксида натрия, %, не менее | 98,5 | 94,0 | 42,0 | 45,5 | 43,0 | 46,0 | 44,0 |
Физические свойства
Гидроксид натрия NaOH — белое твердое вещество. Оставленный на воздухе едкий натрий вскоре рассеивается так как притягивает влагу из воздуха. Вещество хорошо растворяется в воде, при этом выделяется большое количество теплоты.
Температура, ° C | 10 | 20 | 25 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 | |
Растворимость,% | 30 | 39 | 46 | 50 | 53 | 58 | 63 | 71 | 74 | 76 | 76 | 79 |
Растворимость в метаноле составляет 23,6 г / л (при 28 ° C), в этаноле — 14,7 г / л (28 ° C).
Раствор едкого натра ошибкой на ощупь.
Термодинамика растворов
Энтальпия растворения для бесконечно разбавленного водного раствора составляет -44,45 кДж / моль.
Из водных растворов кристаллизуются гидраты:
- при 12,3-61,8 ° C — моногидрат NaOH · H 2 O (сингониях ромбическая, температура плавления 65,1 ° C; плотность 1,829 г / см; ΔH утв -425,6 кДж / моль)
- в интервале -28 … -24 ° C — гептагидрат NaOH · 7H 2 O;
- от -24 до -17,7 ° C — пентагидрат NaOH · 5H 2 O;
- от -17,7 до -5,4 ° C — тетрагидрат NaOH · 4H 2 O (α-модификация);
- от -8,8 до 15,6 ° C — NaOH · 3,5Н 2 О (температура плавления 15,5 ° C).
- от 0 ° C до 12,3 ° C — дигидрат NaOH · 2H 2 O;
Производство
Гидроксид натрия промышленно производится в виде 50% -ного раствора с помощью электролитического хлорщелочного процесса . В этом процессе также образуется газообразный хлор . Из этого раствора испарением воды получают твердый гидроксид натрия. Твердый гидроксид натрия чаще всего продается в виде хлопьев, гранул и литых блоков.
В 2004 году мировое производство было оценено в 60 миллионов сухих тонн гидроксида натрия, а спрос оценивался в 51 миллион тонн. В 1998 году общее мировое производство составляло около 45 миллионов тонн . Северная Америка и Азия произвели около 14 миллионов тонн, в то время как Европа произвела около 10 миллионов тонн. В Соединенных Штатах основным производителем гидроксида натрия является компания Olin, которая ежегодно производит около 5,7 миллионов тонн на площадках во Фрипорте , штат Техас, и в Плакемине , штат Луизиана, Сент-Габриэль, Луизиана, Макинтош, Алабама, Чарльстон, Теннесси, Ниагарафоллс, Нью-Йорк. Йорк и Беканкур, Канада. К другим крупным производителям в США относятся Oxychem , Westlake , Shintek и Formosa . Все эти компании используют процесс хлористой щелочи .
Исторически сложилось так , гидроксид натрия получают путем обработки карбоната натрия с гидроксидом кальция в реакции метатезиса , которое использует тот факт , что гидроксид натрия растворим, в то время как карбонат кальция не является. Этот процесс получил название каустизации.
- Са (ОН)2(водн.) + Na2CO3(s) → CaCO3(т) + 2 NaOH (водн.)
Этот процесс был вытеснен процессом Solvay в конце 19 века, который, в свою очередь, был вытеснен процессом хлористой щелочи, который мы используем сегодня.
Гидроксид натрия также получают путем объединения чистого металлического натрия с водой. Побочными продуктами являются газообразный водород и тепло, часто приводящие к возникновению пламени.
- 2 Na + 2 H2О → 2 NaOH + Н2
Эта реакция обычно используется для демонстрации реакционной способности щелочных металлов в академической среде; однако это коммерчески нецелесообразно, поскольку выделение металлического натрия обычно проводят восстановлением или электролизом соединений натрия, включая гидроксид натрия.