Кальций, свойства атома, химические и физические свойства
Содержание:
- Физические свойства кальция:
- Физические свойства неметаллов
- Кальций радиоактивный
- Химические свойства
- Металлы, неметаллы, металлоиды
- Свойства таблицы Менделеева
- Количество электронов
- Химические свойства кальция
- Что такое металлические и неметаллические свойства
- Источники питания
- Технология получения
- Периоды и группы
- Физико-химические характеристики
- Кальций в природе
- Химический свойства
- Коррозия металла
- Реакция воды с кальцием
Физические свойства кальция:
400 | Физические свойства | |
401 | Плотность* | 1,55 г/см3 (при 0 °C/20 °C и иных стандартных условиях, состояние вещества – твердое тело),
1,378 г/см3 (при 842 °C и иных стандартных условиях, состояние вещества – жидкость) |
402 | Температура плавления* | 842 °C (1115 K, 1548 °F) |
403 | Температура кипения* | 1484 °C (1757 K, 2703 °F) |
404 | Температура сублимации | |
405 | Температура разложения | |
406 | Температура самовоспламенения смеси газа с воздухом | |
407 | Удельная теплота плавления (энтальпия плавления ΔHпл)* | 8,54 кДж/моль |
408 | Удельная теплота испарения (энтальпия кипения ΔHкип)* | 154,7 кДж/моль |
409 | Удельная теплоемкость при постоянном давлении | 0,656 Дж/г·K (при 25 °C) |
410 | Молярная теплоёмкость* | 25,929 Дж/(K·моль) |
411 | Молярный объём | 29,9 см³/моль |
412 | Теплопроводность | 201 Вт/(м·К) (при стандартных условиях),
201 Вт/(м·К) (при 300 K) |
413 | Коэффициент теплового расширения | 22,3 мкм/(М·К) (при 25 °С) |
414 | Коэффициент температуропроводности | |
415 | Критическая температура | |
416 | Критическое давление | |
417 | Критическая плотность | |
418 | Тройная точка | |
419 | Давление паров (мм.рт.ст.) | |
420 | Давление паров (Па) | |
421 |
Стандартная энтальпия образования ΔH |
|
422 | Стандартная энергия Гиббса образования ΔG | |
423 | Стандартная энтропия вещества S | |
424 | Стандартная мольная теплоемкость Cp | |
425 | Энтальпия диссоциации ΔHдисс | |
426 | Диэлектрическая проницаемость | |
427 | Магнитный тип | |
428 | Точка Кюри | |
429 | Объемная магнитная восприимчивость | |
430 | Удельная магнитная восприимчивость | |
431 | Молярная магнитная восприимчивость | |
432 | Электрический тип | |
433 | Электропроводность в твердой фазе | |
434 | Удельное электрическое сопротивление | |
435 | Сверхпроводимость при температуре | |
436 | Критическое магнитное поле разрушения сверхпроводимости | |
437 | Запрещенная зона | |
438 | Концентрация носителей заряда | |
439 | Твёрдость по Моосу | |
440 | Твёрдость по Бринеллю | |
441 | Твёрдость по Виккерсу | |
442 | Скорость звука | |
443 | Поверхностное натяжение | |
444 | Динамическая вязкость газов и жидкостей | |
445 | Взрывоопасные концентрации смеси газа с воздухом, % объёмных | |
446 | Взрывоопасные концентрации смеси газа с кислородом, % объёмных | |
446 | Предел прочности на растяжение | |
447 | Предел текучести | |
448 | Предел удлинения | |
449 | Модуль Юнга | |
450 | Модуль сдвига | |
451 | Объемный модуль упругости | |
452 | Коэффициент Пуассона | |
453 | Коэффициент преломления |
Физические свойства неметаллов
Неметаллы – химические элементы, атомы которых стремятся принять чужие электроны. Для них характерны атомные и молекулярные кристаллические решетки. Для атомов неметаллов не характерны общие физические свойства. На данный момент существует 22 неметалла.
Для неметаллов характерен ряд свойств:
- хрупкость (неметаллы нельзя ковать);
- отсутствие блеска;
- непроводимость электрического тока и тепла.
Расположение металлов и неметаллов в периодической таблице Д.И. Менделеева
Определить, является простое вещество металлом или неметаллом, можно с помощью периодической таблицы Менделеева. Металлы располагаются ниже диагонали «водород-бор- кремний-мышьяк-теллур-астат», а неметаллы выше.
Красные ячейки – неметаллы, синие – металлы
Элементы, расположенные вблизи диагонали, обладают смешанными свойствами: проявляют как металлические, так и неметаллические свойства. Они называются полуметаллами.
Красные ячейки – полуметаллы
Полуметаллы имеют ковалентную кристаллическую решетку при наличии металлической проводимости (электропроводности). Валентных электронов у них либо недостаточно для образования полноценной ковалентной связи, либо они не удерживаются достаточно прочно из-за больших размеров атома. Поэтому связь в ковалентных кристаллах этих элементов имеет частично металлический характер.
Закономерности в таблице Д.И. Менделеева
Каждый атом состоит из протонов, нейтронов и электронов. Протоны и нейтроны находятся в ядре, который несет положительный заряд. Вокруг ядра движутся отрицательно заряженные электроны. Атомный номер указывает на количество протонов.
Чем больше заряд ядра, тем сильнее к нему притягиваются электроны. Т.о., атому сложнее отдавать электроны. Поэтому в периоде слева направо, с увеличением порядкового номера металлические свойства ослабевают, а неметаллические – усиливаются.
Неметаллы стремятся принять электроны от других атомов. Период в таблице указывает на количество электронных уровней. По мере увеличения числа орбиталей электроны отдаляются от ядра и атому сложнее удерживать электроны на последних уровнях. Т.о., в группе сверху вниз количество орбиталей возрастает, поэтому металлические свойства усиливаются, а неметаллические – уменьшаются.
Кальций радиоактивный
Известны 8 искусственных радиоактивных изотопов К.: 37Са (Т1/2 0,17 сек.), 38Са (T1/2 0,66 сек.), 39Са (Т1/2 0,86 сек.), 41Са (Т1/2 8*104 лет), 45Са (Т1/2 153 дня), 47Са (T1/2 4,7 дня), 49Ca (Т1/2 8,5 мин.), 50Са (Т1/2 9 сек.).
Практическое применение нашли 45Ca, обладающий бета-излучением с энергией 0,252 Мэв, и 47Са с бета-излучением двух энергий (0,67 и —2 Мэв) и гамма-излучением с энергией 1,3 Мэв, сопровождающим 74% распадов этого радионуклида.
45Ca получают в ядерном реакторе при облучении стабильного К. нейтронами. Этот радионуклид широко применяется в качестве радиоактивной метки в медицине и в экспериментальных медико-биол. исследованиях при изучении всасывания К. в кишечнике и распределения его в организме в норме и патологии, а также путей и скорости выведения К. из организма при разных способах поступления. Особенно широко используется 45Ca при изучении биохимии кости, а также механизмов трансплацентарного обмена. Метка 45Ca используется также в металлургии, в сельском хозяйстве — для решения вопросов движения влаги в почве, выщелачивания К. из почвы, оценки способов внесения удобрений и т. п. Реже в качестве радиоактивной метки применяют 47Са, получаемый на ускорителе. Этот радионуклид обладает тем преимуществом, что его 7-излучение легче поддается измерению, чем бета-излучение 45Ca; кроме того, имея более короткий период полураспада, он менее токсичен. В методе нейтронного активационного анализа используется образование других изотопов К., в частности 49Са.
Среднегодовая допустимая концентрация в воздухе рабочих помещений установлена: для 45Ca — 3,2*10-11, для 47Са — 1,7*10-10 кюри/л. Минимально значимая активность на рабочем месте, не требующая регистрации или получения разрешения органов Государственного сан. надзора, для обоих радионуклидов равна 10 мккюри.
Химические свойства
Кальций — типичный щёлочноземельный металл. Химическая активность кальция высока, но ниже, чем более тяжёлых щёлочноземельных металлов. Он легко взаимодействует с кислородом, углекислым газом и влагой воздуха, из-за чего поверхность металлического кальция обычно тускло-серая, поэтому в лаборатории кальций обычно хранят, как и другие щёлочноземельные металлы, в плотно закрытой банке под слоем керосина или жидкого парафина.
В ряду стандартных потенциалов кальций расположен слева от водорода. Стандартный электродный потенциал пары Ca2+/Ca −2,84 В, так что кальций активно реагирует с водой, но без воспламенения:
-
- Ca + 2H2O → Ca(OH)2 + H2↑
С активными неметаллами (кислородом, хлором, бромом, йодом) кальций реагирует при обычных условиях:
-
- 2Ca + O2 → 2CaO
-
- Ca + Br2 → CaBr2
При нагревании на воздухе или в кислороде кальций воспламеняется и горит красным пламенем с оранжевым оттенком («кирпично-красным»). С менее активными неметаллами (водородом, бором, углеродом, кремнием, азотом, фосфором и другими) кальций вступает во взаимодействие при нагревании, например:
-
- Ca + H2 → CaH2
-
- Ca + 6B → CaB6
-
- 3Ca + N2 → Ca3N2
-
- Ca + 2C → CaC2
-
- 6Ca + P4 → 2Ca3P2
-
- 2Ca + Si → Ca2Si
Кроме получающихся в этих реакциях фосфида кальция Ca3P2 и силицида кальция Ca2Si, известны также фосфиды кальция составов CaP и CaP5 и силициды кальция составов CaSi, Ca3Si4 и CaSi2.
Протекание указанных выше реакций, как правило, сопровождается выделением большого количества теплоты. Во всех соединениях с неметаллами степень окисления кальция +2. Большинство из соединений кальция с неметаллами легко разлагается водой, например:
-
- CaH2 + 2H2O → Ca(OH)2 + 2H2↑
-
- Ca3N2 + 6H2O → 3Ca(OH)2 + 2NH3↑
Ион Ca2+ бесцветен. При внесении в пламя растворимых солей кальция пламя окрашивается в кирпично-красный цвет.
Такие соли кальция, как хлорид CaCl2, бромид CaBr2, йодид CaI2 и нитрат Ca(NO3)2, хорошо растворимы в воде. Нерастворимы в воде фторид CaF2, карбонат CaCO3, сульфат CaSO4, ортофосфат Ca3(PO4)2, оксалат CaC2O4 и некоторые другие.
Важное значение имеет то обстоятельство, что, в отличие от карбоната кальция CaCO3, кислый карбонат кальция (гидрокарбонат) Ca(HCO3)2 в воде растворим. В природе это приводит к следующим процессам
Когда холодная дождевая или речная вода, насыщенная углекислым газом, проникает под землю и попадает на известняки, то наблюдается их растворение, а в тех местах, где вода, насыщенная гидрокарбонатом кальция, выходит на поверхность земли и нагревается солнечными лучами, протекает обратная реакция
-
- CaCO3 + CO2 + H2O ⇄ Ca(HCO3)2
Так в природе происходит перенос больших масс веществ. В результате под землёй могут образоваться огромные карстовые полости и провалы, а в пещерах образуются красивые каменные «сосульки» — сталактиты и сталагмиты.
Наличие в воде растворенного гидрокарбоната кальция во многом определяет вре́менную жёсткость воды. Вре́менной её называют потому, что при кипячении воды гидрокарбонат разлагается, и в осадок выпадает CaCO3. Это явление приводит, например, к тому, что в чайнике со временем образуется накипь.
Металлы, неметаллы, металлоиды
Расположены в Периодической таблице слева от ступенчатой диагональной линии, которая начинается с Бора (В) и заканчивается полонием (Po) (исключение составляют германий (Ge) и сурьма (Sb). Нетрудно заметить, что металлы занимают бОльшую часть Периодической таблицы. Основные свойства металлов: твердые (кроме ртути); блестят; хорошие электро- и теплопроводники; пластичные; ковкие; легко отдают электроны.
Элементы, расположенные справа от ступенчатой диагонали B-Po, называются неметаллами
. Свойства неметаллов прямо противоположны свойствам металлов: плохие проводники тепла и электричества; хрупкие; нековкие; непластичные; обычно принимают электроны.
Металлоиды
Между металлами и неметаллами находятся полуметаллы
(металлоиды). Для них характерны свойства как металлов, так и неметаллов. Основное применение в промышленности полуметаллы нашли в производстве полупроводников, без которых немыслима ни одна современная микросхема или микропроцессор.
Свойства таблицы Менделеева
Напомним, что группами
называют вертикальные ряды в периодической системе и химические свойства элементов главных и побочных подгрупп значительно различаются.
Свойства элементов в подгруппах закономерно изменяются сверху вниз:
- усиливаются металлические свойства и ослабевают неметаллические;
- возрастает атомный радиус;
- возрастает сила образованных элементом оснований и бескислородных кислот;
- электроотрицательность падает.
Все элементы, кроме гелия, неона и аргона, образуют кислородные соединения, существует всего восемь форм кислородных соединений. В периодической системе их часто изображают общими формулами, расположенными под каждой группой в порядке возрастания степени окисления элементов: R 2 O, RO, R 2 O 3 , RO 2 , R 2 O 5 , RO 3 , R 2 O 7 , RO 4 , где символом R обозначают элемент данной группы. Формулы высших оксидов относятся ко всем элементам группы, кроме исключительных случаев, когда элементы не проявляют степени окисления, равной номеру группы (например, фтор).
Оксиды состава R 2 O проявляют сильные основные свойства, причём их основность возрастает с увеличением порядкового номера, оксиды состава RO (за исключением BeO) проявляют основные свойства. Оксиды состава RO 2 , R 2 O 5 , RO 3 , R 2 O 7 проявляют кислотные свойства, причём их кислотность возрастает с увеличением порядкового номера.
Элементы главных подгрупп, начиная с IV группы, образуют газообразные водородные соединения. Существуют четыре формы таких соединений. Их располагают под элементами главных подгрупп и изображают общими формулами в последовательности RH 4 , RH 3 , RH 2 , RH.
Соединения RH 4 имеют нейтральный характер; RH 3 — слабоосновный; RH 2 — слабокислый; RH — сильнокислый характер.
Напомним, что периодом
называют горизонтальный ряд элементов, расположенных в порядке возрастания порядковых (атомных) номеров.
В пределах периода с увеличением порядкового номера элемента:
- электроотрицательность возрастает;
- металлические свойства убывают, неметаллические возрастают;
- атомный радиус падает.
Количество электронов
Элемент находится в четвертом периоде таблицы Менделеева. Значит, электроны находятся рядом с ядром на четырех орбиталях:
- на первой — 2 e—;
- на второй — 8 e—;
- на третьей — 8 e—;
- на четвертой — 2 e—.
Электроны одинаковы по массе, силе заряда и строению, но имеют разные направления движения и траектории:
- s-электроны — вращаются вокруг собранных в ядро протонов и нейтронов, образуя сферу.
- p-электроны — описывают восьмерки по трем плоскостям.
В природе есть электроны, двигающиеся по более сложным схемам. Они описывают вокруг ядра двойные и четверные восьмерки в различных плоскостях. Но в атоме Ca их нет.
Если расписать строение с учетом электронных орбит, получится следующая формула: 1s22s22p63s23p64s2. Графическая формула (электронная конфигурация кальция) выглядит как 4s².
Благодаря двум свободным s-электронам на четвертом энергетическом уровне Ca химически активен. Он почти никогда не находится в свободном состоянии, соединяясь в природе с водой или кислородом.
Состав распространенных соединений кальция:
- CaO — известняк;
- Ca CO3 — известняк, мрамор, мел;
- CaSO 4 ·2H 2 O — гипс;
- cacl2 — пищевая добавка.
При взаимодействии с водой идет образование щелочи — гидроксида кальция. Реакция проходит с выделением водорода.
Каждый атом Ca присоединяет 2 группы OH. В результате формула гидроксида выглядит как Cа (OH)2.
Химические свойства кальция
Кальций — активный металл, вступающий во многие взаимодействия. При нормальных условиях он легко реагирует, образуя соответствующие бинарные соединения: с кислородом, галогенами. Нажмите здесь, чтобы узнать больше о соединениях кальция. При нагревании кальций реагирует с азотом, водородом, углеродом, кремнием, бором, фосфором, серой и другими веществами. На открытом воздухе мгновенно взаимодействует с кислородом и углекислым газом, поэтому покрывается серым налетом.
Бурно реагирует с кислотами, при этом иногда воспламеняется. В солях кальций проявляет интересные свойства. Например, пещерные сталактиты и сталагмиты — это карбонат кальция, постепенно образовавшийся из воды, углекислого газа и гидрокарбоната в итоге процессов внутри подземных вод.
Что такое металлические и неметаллические свойства
Эти свойства зависят от способности элемента отдавать или притягивать к себе электроны
Важно запомнить одно правило, металлы – отдают электроны, а неметаллы – принимают. Соответственно металлические свойства – это способность определённого химического элемента отдавать свои электроны (с внешнего электронного облака) другому химическому элементу
Для неметаллов всё в точности наоборот. Чем легче неметалл принимает электроны, тем выше его неметаллические свойства.
Металлы никогда не примут электроны другого химического элемента. Такое характерно для следующих элементов;
- натрия;
- калия;
- лития;
- франция и так далее.
С неметаллами дела обстоят похожим образом. Фтор больше всех остальных неметаллов проявляет свои свойства, он может только притянуть к себе частицы другого элемента, но ни при каких условиях не отдаст свои. Он обладает наибольшими неметаллическими свойствами. Кислород (по своим характеристикам) идёт сразу же после фтора. Кислород может образовывать соединение с фтором, отдавая свои электроны, но у других элементов он забирает отрицательные частицы.
Список неметаллов с наиболее выраженными характеристиками:
- фтор;
- кислород;
- азот;
- хлор;
- бром.
Неметаллические и металлические свойства объясняются тем, что все химические вещества стремятся завершить свой энергетический уровень. Для этого на последнем электронном уровне должно быть 8 электронов. У атома фтора на последней электронной оболочке 7 электронов, стремясь завершить ее, он притягивает ещё один электрон. У атома натрия на внешней оболочке один электрон, чтобы получить 8, ему проще отдать 1, и на последнем уровне окажется 8 отрицательно заряженных частиц.
Благородные газы не взаимодействуют с другими веществами именно из-за того, что у них завершён энергетический уровень, им не нужно ни притягивать, ни отдавать электроны.
Источники питания
Продукты, богатые кальцием, включают молочные продукты , такие как йогурт и сыр , сардины , лосось , соевые продукты, капусту и обогащенные хлопья для завтрака .
Из-за опасений по поводу долгосрочных неблагоприятных побочных эффектов, включая кальцификацию артерий и почечных камней , Институт медицины США (IOM) и Европейское управление по безопасности пищевых продуктов (EFSA) установили допустимые верхние уровни потребления (UL) для комбинированного питания и пищевых добавок. кальций. Согласно IOM, люди в возрасте 9–18 лет не должны превышать комбинированное потребление 3 г / день; в возрасте 19–50 лет — не более 2,5 г / день; для возраста 51 год и старше — не более 2 г / день. EFSA установило UL для всех взрослых на уровне 2,5 г / день, но решило, что информации для детей и подростков недостаточно для определения UL.
Технология получения
Конечный продукт промышленного производства – металлический кальций.
Металлический Кальций
Получение металла проходит двумя методами:
- Электролиз. Расплавляют CaCl2, задействуя медно-кальциевый анод. Из полученного медно-кальциевого сплава (2:1) отгоняют металл.
- Алюминотермия. Прокаливается смесь CaO и порошковый алюминий. Конденсат из кальциевых паров аккумулируется на охлаждаемой поверхности.
Для обоих способов получения металла требуется вакуум и 960-1900°С.
Единственный производитель кальция в Европе – Чепецкий механический завод. Его открыли в 1949 году для нужд отечественной урановой промышленности. Уже тогда СССР отработал процесс восстановления урана кальцием. Сегодняшний ассортимент шире.
Периоды и группы
Как уже говорилось выше, периодическая таблица состоит из семи периодов. В каждом периоде атомные номера элементов увеличиваются слева направо.
Свойства элементов в периодах изменяются последовательно: так натрий (Na) и магний (Mg), находящиеся в начале третьего периода, отдают электроны (Na отдает один электрон: 1s 2 2s 2 2p 6 3s 1 ; Mg отдает два электрона: 1s 2 2s 2 2p 6 3s 2). А вот хлор (Cl), расположенный в конце периода, принимает один элемент: 1s 2 2s 2 2p 6 3s 2 3p 5 .
В группах же, наоборот, все элементы обладают одинаковыми свойствами. Например, в группе IA(1) все элементы, начиная с лития (Li) и заканчивая францием (Fr), отдают один электрон. А все элементы группы VIIA(17), принимают один элемент.
Некоторые группы настолько важны, что получили особые названия. Эти группы рассмотрены ниже.
Группа IA(1)
. Атомы элементов этой группы имеют во внешнем электронном слое всего по одному электрону, поэтому легко отдают один электрон.
Наиболее важные щелочные металлы — натрий (Na) и калий (K), поскольку играют важную роль в процессе жизнедеятельности человека и входят в состав солей.
Электронные конфигурации:
-
Li
— 1s 2 2s 1 ; -
Na
— 1s 2 2s 2 2p 6 3s 1 ; -
K
— 1s 2 2s 2 2p 6 3s 2 3p 6 4s 1
Группа IIA(2)
. Атомы элементов этой группы имеют во внешнем электронном слое по два электрона, которые также отдают во время химических реакций. Наиболее важный элемент — кальций (Ca) — основа костей и зубов.
Электронные конфигурации:
-
Be
— 1s 2 2s 2 ; -
Mg
— 1s 2 2s 2 2p 6 3s 2 ; -
Ca
— 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2
Группа VIIA(17)
. Атомы элементов этой группы обычно получают по одному электрону, т.к. на внешнем электронном слое находится по пять элементов и до «полного комплекта» как раз не хватает одного электрона.
Наиболее известные элементы этой группы: хлор (Cl) — входит в состав соли и хлорной извести; йод (I) — элемент, играющий важную роль в деятельности щитовидной железы человека.
Электронная конфигурация:
-
F
— 1s 2 2s 2 2p 5 ; -
Cl
— 1s 2 2s 2 2p 6 3s 2 3p 5 ; -
Br
— 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 5
Группа VIII(18).
Атомы элементов этой группы имеют полностью «укомплектованный» внешний электронный слой. Поэтому им «не надо» принимать электроны. И отдавать их они «не хотят». Отсюда — элементы этой группы очень «неохотно» вступают в химические реакции. Долгое время считалось, что они вообще не вступают в реакции (отсюда и название «инертный», т.е. «бездействующий»). Но химик Нейл Барлетт открыл, что некоторые из этих газов при определенных условиях все же могут вступать в реакции с другими элементами.
Электронные конфигурации:
-
Ne
— 1s 2 2s 2 2p 6 ; -
Ar
— 1s 2 2s 2 2p 6 3s 2 3p 6 ; -
Kr
— 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6
Физико-химические характеристики
Кальций представлен двумя модификациями кубической решетки: с гране- и объемноцентрированной структурой.
Химические свойства проявляются при нагревании:
- Взаимодействие с горячей водой приводит к образованию водородного «фонтана». Но реакция проходит без взрывов или горения.
- Взаимодействует с кислотами, неметаллами, образуя соединения.
- Даже при комнатной температуре во влажном микроклимате покрывается пленкой.
Нагреваясь в кислороде либо на воздухе, кальций, его растворимые соли горят. Пламя получается красно-оранжевым. По цвету его легко отличить от других металлов.
Кальций в атмосфере аргона
Химическая активность вещества зашкаливает. Для устранения этого недостатка металл хранят в керосине, растопленном парафине либо закупоренном сосуде.
Свойства атома | |
---|---|
Название, символ, номер | Ка́льций/Calcium (Ca), 20 |
Атомная масса (молярная масса) |
40,078(4) а. е. м. (г/моль) |
Электронная конфигурация | 4s2 |
Радиус атома | 197 пм |
Химические свойства | |
Ковалентный радиус | 174 пм |
Радиус иона | (+2e) 99 пм |
Электроотрицательность | 1,00 (шкала Полинга) |
Электродный потенциал | −2,76 В |
Степени окисления | 2 |
Энергия ионизации (первый электрон) |
589,4 (6,11) кДж/моль (эВ) |
Термодинамические свойства простого вещества | |
Плотность (при н. у.) | 1,55 г/см³ |
Температура плавления | 1112 К; 838,85 °C |
Температура кипения | 1757 К; 1483,85 °C |
Уд. теплота плавления | 9,20 кДж/моль |
Уд. теплота испарения | 153,6 кДж/моль |
Молярная теплоёмкость | 25,9 Дж/(K·моль) |
Молярный объём | 29,9 см³/моль |
Кристаллическая решётка простого вещества | |
Структура решётки | кубическая гранецентрированная |
Параметры решётки | 5,580 Å |
Температура Дебая | 230 K |
Прочие характеристики | |
Теплопроводность | (300 K) (201) Вт/(м·К) |
Номер CAS | 7440-70-2 |
Под давлением он ведет себя как полупроводник, затем как металл, потом подобно сверхпроводнику. По проводимости в разы превосходит все химические элементы (например, ртуть – вшестеро).
Кальций в природе
Кальций является очень важной составной частью живой природы – большая
часть живых организмов может существовать благодаря именно ему. И человек тоже!. Кальций был известен ещё древним римлянам, которые оксид кальция
использовали для приготовления извести
Впервые этот элемент выделил сэр Хемфри Дэйвис
(Humphre Davy) в 1808 году
Кальций был известен ещё древним римлянам, которые оксид кальция
использовали для приготовления извести. Впервые этот элемент выделил сэр Хемфри Дэйвис
(Humphre Davy) в 1808 году.
В массе земной коры и солёной воде кальций находится на пятом месте среди
наиболее часто встречающихся элементов, хотя в природе он находится только в виде
соединений (известняк (карбонат кальция), гипс (сульфат кальция) и доломит). Кальций
содержится почти во всех неорганических связующих веществах!
Известняки делятся по составу и структуре. По структурным особенностям
различают брахиоподные, кристаллические, комковатые и известняки других видов. Если
разного вида примеси составляют более 50%, то их подразделяют на песчаники, глинистые,
кремнистые, доломиты и содержащие глаукониты известняки.
В основном известняки образуются в неглубоких морях. Более подробно их
подразделяют на биогенные (если происхождение биологическое), гомогенные,
кристаллические, а также на известняки смешанного происхождения.
Кальций используют в различных областях: в строительной промышленности из
известняка производят цемент и известь, в сахарной промышленности его используют для
очистки свекольного сока-сырца, в химической промышленности – для производства соды,
карбида кальция и минеральных удобрений. Применяют кальций и как добавку для улучшения
термической и химической стойкости стекла, а в сельском хозяйстве – для известкования
почвы, а также как добавку в корма скота. Медицина – это только одно из многих
направлений, в котором кальций может быть полезен человеку.
Кальцит (от греческого chal и латинского calx – кальций) –
один из самых распространённых на нашей планете минералов с очень многообразными
кристаллическими формами. Название минерала введено в 1845 году.
Кальцитам свойственна относительно низкая твёрдость и способность лёгко
вступать в реакцию со слабыми кислотами, например, с уксусной кислотой, а также они
прекрасно расщепляются. Реакция кальцита при соприкосновении с кислотами – один из явных
признаков при определении этого многообразного минерала.
Кальцит содержится в таких распространённых горных породах, как известняк
и мрамор. Кальцит вы встретите, наслаждаясь горячими источниками или любуясь
сталактитами и сталагмитами в пещерах. Кальцит – главная составляющая внешних скелетов
многих организмов, в том числе, планктона, части раковин, например, панциря устриц.
Карбонат кальция (CaCO3) – наиболее часто встречающаяся часть
медикаментов кальция. Это белое кристаллическое вещество, широко встречающееся в природе
в виде известняка и доломита.
Карбонат кальция плохо растворяется, однако встречается и в жёсткой воде.
Он реагирует с сильными кислотами, выделяя CO2.
Химический свойства
Является типичным представителем семейства щелочноземельных металлов. Кальций вступает в реакции с разными веществами, так как является химически активным.
Несмотря на свою высокую способность к взаимодействию, кальций не самый активный металл семейства. Степень окисления +2.
Кальций вступает в следующие химические реакции:
- С кислородом взаимодействует в нормальных условиях, образуя оксид и выделяя тепло. Может даже загореться чистым красным огнем и белым дымом. Образуется оксид кальция — 2Ca + O₂ -> 2CaO.
- С галогенами реагирует в нормальных условиях — Ca + Br₂ -> CaBr₂ – бромид.
- С углеродом дает реакцию при нагреве. Аналогичными будут взаимодействия с водородом, кремнием и другими неметаллами — Ca + 2C -> CaC₂ – карбид.
- С кислотами, иногда с мощным выделением тепла. Выделяют 2 варианта уравнения реакции кальция с серной кислотой: Ca + H₂SO₄(разбавленная) -> CaSO₄ + 2H₂ и Ca + H₂SO₄(концентрированная) -> CaSO₄ + SO₂ + 2H₂O. В обоих случаях результатом реакции будет соль сульфат, побочные продукты.
- С водой реакция проходит с выделением тепла, но без воспламенений — Ca + 2H₂O -> Ca(OH)2 + H₂.
На воздухе металл покрывается сероватым налетом.
В реакции вступает много соединений элемента:
- Соединения кальция и неметаллов в присутствии воды разлагаются до гидроксида, водорода — CaH₂ + H₂O -> Ca(OH)₂ + 2H₂.
- Существует особенный перенос веществ, а именно превращение из карбоната в кислую его версию и обратно в разных условиях.
- При реакции воды, обогащенной углекислым газом, с карбонатом кальция выделяется кислый карбонат, одновременно происходит растворение — СаСО3 + СО2 + Н2О = Са(НСО3)2.
- В обратном случае кислый карбонат кальция нагревается под солнцем распадаясь на 3 компонента — Са(НСО3)2 = СаСО3 + СО2↑ + Н2О.
Рекомендовано не хранить кальций в открытом виде, а убирать в герметичную стеклянную посуду с добавлением парафина или керосина.
Коррозия металла
Коррозия – это процесс разрушения металлов или металлических конструкций под действием кислорода, воды и вредных примесей. Не все металлы подвергаются коррозии. Их стойкость зависит от ряда факторов.
- На благородных металлах не образуется коррозия.
- На поверхности алюминия, титана, цинке, хрома и никеля есть оксидная пленка, которая предотвращает процессы коррозии.
Различают несколько видов коррозии – химическую и электрохимическую.
Химическая коррозия
Химическая коррозия сопровождается химическими реакциями. Она образуется под действием газов.
3 Fe + 2 O2 → Fe3O4
2 Fe + 3 Cl2 → 2 FeCl3
Электрохимическая коррозия
Электрохимическая коррозия – процесс разрушения металлов или металлических конструкций, который сопровождается электрохимическими реакциями. В большинстве металлов находятся примеси. В процессе коррозии электродами могут служить не только металлы, но и его примеси.
Например, в железе могут находиться примеси олова. В этом случае на аноде электроны переносятся от олова к железу и металлы растворяются, т.е. железо подвергаются коррозии. На катоде восстанавливается водород из воды или растворенного кислорода. Электрохимическая коррозия может сопровождаться следующими процессами.
Анод: Fe2+ — 2e → Fe
Катод: 2H+ + 2e → H2
Способы защиты от коррозии
В промышленности популярны различные методы защиты металлов от коррозии.
Защитные покрытия
Покрытия защищают поверхности от действия окислителей. Ими служат различные вещества:
- покрытие менее активным металлом (железо покрывают оловом);
- краски, лаки, смазки.
- Создание специальных сплавов
Физические свойства сплавов и чистых металлов отличаются. Поэтому для повышения стойкости в сплав необходимо добавить дополнительные металлы.
Реакция воды с кальцием
Кальций хранят в банках под слоем защитной жидкости. Чтобы провести опыт, демонстрирующий, как происходит реакция воды и кальция, нельзя просто достать металл и отрезать от него нужный кусочек. Металлический кальций в лабораторных условиях проще использовать в виде стружки.
Если металлической стружки нет, а в банке есть только большие куски кальция, потребуются пассатижи или молоток. Готовый кусочек кальция нужного размера помещают в колбу или стакан с водой. Кальциевую стружку кладут в посуду в марлевом мешочке.
Кальций опускается на дно, и начинается выделение водорода (сначала в месте, где находится свежий излом металла). Постепенно с поверхности кальция выделяется газ. Процесс напоминает бурное кипение, одновременно образовывается осадок гидроксида кальция (гашёная известь).